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ABSTRACT

Varicella-zoster virus (VZV) is a human herpesvirus, which during primary infection typically causes varicella (chicken pox) and
establishes lifelong latency in sensory and autonomic ganglia. Later in life, the virus may reactivate to cause herpes zoster (HZ;
also known as shingles). To prevent these diseases, a live-attenuated heterogeneous vaccine preparation, vOka, is used routinely
in many countries worldwide. Recent studies of another alphaherpesvirus, infectious laryngotracheitis virus, demonstrate that
live-attenuated vaccine strains can recombine in vivo, creating virulent progeny. These findings raised concerns about using at-
tenuated herpesvirus vaccines under conditions that favor recombination. To investigate whether VZV may undergo recombina-
tion, which is a prerequisite for VZV vaccination to create such conditions, we here analyzed 115 complete VZV genomes. Our
results demonstrate that recombination occurs frequently for VZV. It thus seems that VZV is fully capable of recombination if
given the opportunity, which may have important implications for continued VZV vaccination. Although no interclade vaccine-
wild-type recombinant strains were found, intraclade recombinants were frequently detected in clade 2, which harbors the vac-
cine strains, suggesting that the vaccine strains have already been involved in recombination events, either in vivo or in vitro
during passages in cell culture. Finally, previous partial and complete genomic studies have described strains that do not cluster
phylogenetically to any of the five established clades. The additional VZV strains sequenced here, in combination with those pre-
viously published, have enabled us to formally define a novel sixth VZV clade.

IMPORTANCE

Although genetic recombination has been demonstrated to frequently occur for other human alphaherpesviruses, herpes sim-
plex viruses 1 and 2, only a few ancient and isolated recent recombination events have hitherto been demonstrated for VZV. In
the present study, we demonstrate that VZV also frequently undergoes genetic recombination, including strains belonging to the
clade containing the vOKA strain.

Varicella-zoster virus (VZV) is a human herpesvirus belonging
to the genus Varicellovirus of the Alphaherpesvirinae subfam-

ily of the order Herpesvirales. VZV has a stable prevalence in all
countries worldwide, and the primary infection is almost always
symptomatic. Upon initial infection, the virus typically causes
chicken pox, a highly contagious disease with tropism to skin and
ganglia. In temperate climates, chicken pox is most commonly
observed in children and is one of the classic diseases of childhood.
In contrast, in tropical regions chicken pox often occurs in ado-
lescents or adults, typically causing more-severe symptoms (1).
Primary infection is followed by the establishment of lifelong la-
tency of the virus in dorsal root and trigeminal ganglia. The virus
may then reactivate at a later stage from one or more ganglia to
cause herpes zoster, affecting the corresponding dermatomes (2).
The virus may also cause various neurological complications, such
as facial palsy, encephalitis, meningitis, and cerebral vasculitis
(3–8).

The disease burden of primary and reactivated VZV motivated
the development and use of a vaccine to prevent its spread and
disease. A live attenuated vaccine strain, vOka (Varivax or Varil-
rix) was originally developed in Japan to prevent the spread of

varicella among children (9). This vaccine, a heterogeneous mix-
ture of related haplotypes, is routinely used in many countries,
including Japan, South Korea, the United States, Canada, Austra-
lia, Germany, Costa Rica, Uruguay, and Qatar. More recently, the
vaccine trademarked as Zostavax was licensed for use in the pre-
vention of herpes zoster and postherpetic neuralgia in elderly peo-
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ple in the United States (10) and was also approved for use in the
European Union (EU) with adults aged �50 years (11).

Herpesviruses are double-stranded DNA viruses, and all mem-
bers of the Alphaherpesvirinae subfamily share similar properties
such as short replication cycles and the establishment of lifelong
latency in ganglia. Three members of the Alphaherpesvirinae sub-
family infect humans. These are, in addition to VZV, herpes sim-
plex virus 1 (HSV-1) and HSV-2. VZV has a genome size of ap-
proximately 125,000 bp. Assays based on restriction fragment
length polymorphism (RFLP) patterns or PCR products from
variable-number tandem repeat (VNTR) regions have been fre-
quently used to analyze genetic diversity, classify VZV genotypes,
and genotype clinical VZV strains (recently reviewed in reference
12). VZV was first sequenced in 1986 (13) and remains the most
widely sequenced of the herpesviruses. This has enabled analyses
of complete VZV genomes and the identification of single nucle-
otide polymorphisms (SNPs) that allow the segregation of VZV
strains into at least five distinct clades (14–17).

Several studies have demonstrated that homologous recombi-
nation contributes significantly to the evolution of many herpes-
viruses, including HSV-1 (12, 18–21). Recent complete genome
analysis of HSV-1 strains suggests that all or most wild-type strains
have recombinant mosaic genomes (22, 23). Similarly, homolo-
gous recombination has also been demonstrated for HSV-2, and it
was suggested that the frequency of recombination is even higher
for HSV-2 than for HSV-1, although no comparative complete
genome analysis has yet been performed (22, 24). In contrast, the
role, if any, of recombination in VZV remains uncertain. It has,
however, been demonstrated that coinfection with more than one
genotype can occur (25) and that reinfection with VZV may result
in cases of herpes zoster (26). It has also been demonstrated that
VZV may undergo recombination in tissue culture in vitro (27).
Although Muir et al. assumed that recombination “had little effect
on the evolution of the genotypes” (28), later studies demon-
strated that at least some of the VZV clades emerged through
recombination (14–16). In recent studies by Norberg et al. (22)
and Zell et al. (29), it was demonstrated that intraclade recombi-
nation has also occurred and it was speculated that the rate of
detected recombinants may increase as more genomes are se-
quenced. In any case, compared with other human alphaherpes-
viruses, only a few ancient and some isolated recent recombina-
tion events have hitherto been described for VZV. A possible
explanation for the low frequency of detected recombinants for
VZV may be that strains from the different clades of VZV have
been geographically segregated (26, 28, 30, 31). Interestingly,
however, recent studies suggest that this segregation has dimin-
ished in the face of increased human migration (32, 33), which
should increase the chances of recombination between VZV
strains from different clades (12, 15, 22). In addition, the intro-
duction of VZV vaccine preparations (containing live clade 2
strains) in geographic regions where other clades dominate could
be expected to further increase the extent of interclade recombi-
nation.

Recombination between wild-type and attenuated vaccine
strains and the putative consequences thereof have been demon-
strated and/or discussed for several viruses, such as members of
the Flaviviridae family (34–36), pestiviruses (37), polioviruses
(38–40), avian paramyxovirus-1 (41), myxoma viruses (42), por-
cine reproductive and respiratory syndrome virus (43), and her-
pesviruses (15, 22, 44, 45). Recombination between two live her-

pesvirus vaccine strains was reported for pseudorabies virus,
which is an alphaherpesvirus that infects pigs (44). The authors
coinfected swine with two different attenuated vaccine strains,
and virus isolates derived by serial plaque purification directly
from tissue homogenates were characterized as recombinant and
parental strains. Another recent study of infectious laryngotrache-
itis virus (ILTV), an alphaherpesvirus that infects poultry, ana-
lyzed distinct viruses (referred to as genotype classes 8 and 9) that
were isolated from geographically distinct areas of Australia in
2008 (45). These strains are highly virulent and have been associ-
ated with outbreaks causing mortality rates of up to 17.6% (46).
Three ILTV vaccines (live attenuated strains) are available in Aus-
tralia: two closely related vaccines of Australian origin, SA2 and
A20 (Pfizer, Australia), and one vaccine of European origin, Serva
(Intervet). The vaccines of Australian origin are closely related and
classified as class 1 (47). The vaccine of European origin, however,
is classified as class 7 (48), and its genome is divergent from the
vaccine strains of Australian origin, having only 99.2% nucleotide
sequence identity (47). Whole-genome analysis of the virulent
viruses of classes 8 and 9 demonstrated that these are recombinant
viruses derived from the vaccine strains of Australian and Euro-
pean origin (45). It is thus possible for some live attenuated her-
pesvirus vaccine strains to recombine in vivo to form virulent
progeny that spreads through the population. The authors also
studied the pathogenicity of these recombinant viruses in specific-
pathogen-free chickens and concluded that each recombinant
strain had distinct in vivo genotypes with significantly increased
virulence or replication compared with their parental strains.
These findings gave rise to concerns about the use of attenuated
herpesvirus vaccines under conditions that favor recombination
(45).

Although recombination has been evidenced in VZV, little is
known about how frequently recombination events occur within
the host population. To evaluate the likeliness of the emergence of
novel interclade recombinants as a result of increased migration
and/or vaccination with attenuated viruses, we need to increase
our understanding of VZV recombination in general and to de-
termine how frequently this occurs in nature. The aim of the pres-
ent study was thus to perform an evolutionary analysis of VZV and
thoroughly map the extent of homologous recombination be-
tween circulating VZV strains. The purpose was to evaluate
whether the use of attenuated VZV vaccines might present condi-
tions that favor recombination. We analyzed 115 complete VZV
genomes, derived from GenBank or newly sequenced here, from
wild-type and vaccine strains using multiple advanced algorithms
in parallel for comparison. Phylogenetic analysis revealed the
presence of a novel clade of VZV, which was designated clade 6.
We also present data that support frequent homologous recombi-
nation of VZV and provide strong statistical support for the exis-
tence of multiple inter- and intraclade recombination events.
These results may have implications for our understanding of the
future evolution of VZV and the use of live VZV vaccines.

MATERIALS AND METHODS
Ethics statement. Clinical specimens (diagnostic samples collected as part
of standard clinical procedures) were independently obtained from pa-
tients with confirmed VZV infection and anonymized prior to this study.
Consent for all children and adult participants was written and informed.
The parent or guardian of any child participant provided informed con-
sent on their behalf. The use of these specimens for research was approved
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by the East London and City Health Authority Research Ethics Commit-
tee (P/96/046: Molecular typing of cases of varicella-zoster virus). Ethical
permission for collecting clinical strains in Sweden was granted by the
Regional Ethical Committee in Gothenburg, Sweden (Dnr 370-06).

DNA extraction, library construction, targeted enrichment, and se-
quencing. DNA was extracted from each sample using the QiaAMP DNA
minikit (Qiagen) according to the manufacturer’s instructions. DNA
quantification was performed using a NanoDrop spectrophotometer, and
samples with 260/280 ratios outside the range of 1.7 to 2.1 and/or 260/230
ratios outside the range of 1.8 to 2.2 were further purified using the
Genomic DNA Clean & Concentrator kit (Zymo Research) according to
the manufacturer’s instructions. Whole-genome amplification using
GenomiPhi V2 (GE Healthcare) was performed using 10 ng of DNA and
yielded between 3,000 and 5,000 ng of DNA. Sequencing libraries were
constructed using 3,000 ng of DNA as input, as per the standard Sure-
Select XT v1.5 protocols (Agilent). Enrichment for VZV DNA was per-
formed as described previously (49, 50). The final sequence libraries were
multiplexed and sequenced using either 2 � 150 bp or 2 � 250 bp paired-
end kits across multiple runs on an Illumina MiSeq.

Genome assembly and variant calling. Sequence data sets were de-
multiplexed using BaseSpace, and individual data sets were subsequently
parsed through Quasr (51) for duplicate removal and read-trimming
(-q 30, -l 50) and subsequently aligned against the VZV reference strain
Dumas (NC_001348) using BWA (52). The resulting alignments were
processed using SAMTools (17) to generate pileup files for each sample. A
consensus sequence for each data set was called with the Quasr module
“pileupConsensus” and a 50% frequency threshold (i.e., no ambiguities
were included). Variant profiling for each data set was performed using

VarScan v2.2.11 (53) with the following parameters: base call quality,
�20; read depth, �50; independent reads supporting minor allele, �2 per
strand. In addition, variant calls showing a directional strand bias of
�0.85 were excluded from further analyses. Consensus sequences were
generated for each rash sample, but iterative repeat regions R1, R2, R3, R4,
and R5 (19, 20) as well as the terminal repeat region were trimmed prior to
tree-building analyses.

DNA sequence analysis. DNA sequences were aligned using Kalign
(54) implemented in eBioX (55). Phylogenetic networks were constructed
using SplitsTree4 (56) with Uncorrected_P characters transformation,
and all gaps and repeat regions were excluded prior to analysis. The infor-
mative sites analysis was performed using SimPlot (57), and the recombi-
nation analysis was performed by using the algorithms RDP, Geneconv,
Chimaera, MaxChi, BootScan, SisScan, 3Seq, and LARD implemented in
RDP4 (58) with default settings.

Phylogenetic analysis is the reconstruction of the evolutionary history
of organisms, in this case of different VZV strains. Based on differences
and similarities in their genomes, i.e., single nucleotide polymorphisms,
the strains are typically arranged as external nodes in bifurcating trees,
so-called phylogenetic or evolutionary trees. The strains are supposed to
have descended from common ancestors that are represented in the phy-
logenetic tree as internal nodes to which the external nodes are attached.
However, a limitation with these traditional phylogenetic trees is that they
are bifurcating and assume that recombination has not contributed to the
evolution. In a recombinant virus, different parts of the genome might
have completely different evolutionary histories since they descend from
different parental strains. At least two different phylogenetic trees are thus
necessary to correctly illustrate the evolutionary history of a recombinant
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FIG 1 Schematic illustration demonstrating the fundamental basics of phylogenetic representations of recombination events and the limitations of traditional
bifurcating phylogenetic trees. (A) Traditional phylogenetic tree illustrating the evolutionary history of three fictional small genomes, parental strain 1, parental
strain 2, and strain 3 (top) and a recombination event between parental strains 1 and 2, in which the strain recombinant is created by concatenating the first
genomic segment of parental strain 1 with the last genomic segment of parental strain 2 (bottom). (B and C) Rooted traditional bifurcating phylogenetic trees
(top) and unrooted phylogenetic networks (bottom) based on the first (B) and last (C) parts of the genomes, respectively (i.e., before and after the recombination
breakpoint). Here, all phylogenies reflect the true evolutionary history of the respective genomic segment, but none reflect the correct evolutionary history for the
complete genomes. The traditional bifurcating phylogenetic tree based on the complete genome (D, top) cannot illustrate recombination events but instead
places the recombinant strain separately from the other strains since it contain parts from both parental strains, which the algorithms interpret as separate
evolution. Hence, this tree does not reflect the true evolutionary history of any genomic segment. The use of traditional phylogenetic trees should therefore be
avoided when recombinant genomes are included in the analysis. The phylogenetic network (D, bottom), however, correctly illustrates the evolutionary
relationships between the different strains. The parallel edges in the network illustrate the conflicting phylogenetic signals resulting from the multiple evolu-
tionary histories found in the recombinant strain. In phylogenetic networks, parallel branches or internal “boxes” thus indicate that the data sets have conflicting
phylogenetic signals. These conflicting signals may be a result of either convergent evolution or recombination.
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virus. The more recombination events that have occurred among the
strains that are analyzed, the more phylogenetic trees are needed to rep-
resent the evolutionary histories of the different parts of the genomes of
the strains. This quickly becomes highly impractical. To overcome this
problem, the viral strains may instead be arranged in phylogenetic net-
works to illustrate the evolutionary relationships between them. A phylo-
genetic network may simply be explained as a combination of all phylo-
genetic trees supported by the genomic data under analysis (59), as
illustrated in Fig. 1. As such, all parallel edges in a phylogenetic network
thus represent conflicting phylogenetic signals. To include the possibility
of recombination, we performed a phylogenetic analysis of the 115 aligned
VZV genomes by constructing phylogenetic networks using SplitsTree
(56).

Recombination analysis. The detection of recombinant strains was
carried out by analyzing conflicting phylogenetic signals (SNPs). Phy-
logenetically incompatible sites in a sequence alignment can be a result
either of recombination or of convergent evolution on the nucleotide
level, i.e., true homoplasy, where a specific nucleotide substitution
independently arises at the same position in two viruses. Such recur-
rent mutations may arise randomly or by a selection pressure on spe-
cific biologically important sites. The challenge was therefore to detect
phylogenetically conflicting sites and to deduce whether they were

caused by recombination or by convergent evolution. First, we used
the program SplitsTree (56) to create phylogenetic networks that illus-
trate the evolutionary relationships between the strains. When phylo-
genetic incongruences were detected, we used the phi-test, and algo-
rithms included in the RDP4 program (RDP, Geneconv, Chimaera,
MaxChi, BootScan, SisScan, 3Seq, and LARD) to perform a statistical
analysis to determine whether the conflicting phylogenetic sites were
the result of recombination. In addition, the informative site analysis
tool implemented in the SimPlot program was used to detect and
illustrate conflicting phylogenetic signals in selected strains, and pu-
tative interclade recombinants were also analyzed using the bootscan
algorithm implemented in SimPlot.

Nucleotide sequence accession numbers. Consensus sequences for
all samples sequenced in this study are available in GenBank under the
accession numbers shown in Table 1.

RESULTS
Phylogenetic analysis. We sequenced the complete genomes of 37
clinical strains (Table 1) isolated from patients in Europe and
Singapore. We also accessed publicly available complete VZV ge-
nomes from GenBank. In total, 115 complete VZV genomes were

TABLE 1 ID, accession numbers, source (body compartment), sample collection date, and pathology of the 37 strains sequenced

Strain ID Accession no. Source (body compartment) Sample collection dateb Pathology

Ves/Cli/POR/Ves/5001 KP771921 Vesicle fluid Not known Varicella
Var/Cli/BAL/UK/2402/2009 KP771904 BALa specimen 24/02/09 Varicella
Var/Cli/Ves/UK/1001/2012 KP771920 Vesicle fluid 10/01/12 Varicella
Zos/Cli/Ves/UK/1801/2012 KP771925 Vesicle fluid Not known Zoster
Var/Cli/UK/BLD/1401/2012 KP771906 EDTA blood 14/01/12 Varicella (fatal)
Var/Cli/UK/BAL/1001/2012 KP771905 BAL specimen 10/01/12 Varicella (fatal)
Zos/Cli/GRE/Ves/03/2012 KP771923 Vesicle fluid 01/03/12 Zoster
Var/Cli/UK/Ves/1301/2013 KP771911 Vesicle fluid 13/01/13 Zoster with encephalitis
Var/Cli/UK/Ves/0706/2013 KP771910 Vesicle fluid 07/06/13 Zoster with encephalitis
Var/Cli/UK/Ves/2203/2013 KP771912 Vesicle fluid 22/03/13 Varicella
Var/Cli/UK/Ves/2403/2013 KP771913 Vesicle fluid 24/03/13 Varicella (fatal)
Var/Cli/UK/CSF/2912/2012 KP771908 CSF 29/12/12 Varicella with encephalitis
Var/Cli/UK/Ves/0201/2013 KP771909 Vesicle fluid 02/01/13 Varicella with encephalitis
Var/Cli/UK/CSF/0102/2013 KP771907 CSF 01/02/13 Encephalitis
DE10-1515 KP771891 Vesicle fluid Not known Zoster
DE10-2480 KP771892 Vesicle fluid Not known Zoster
DE10-2660 KP771893 Vesicle fluid Not known Zoster
DE10-2704 KP771894 Vesicle fluid Not known Zoster
DE10-3378 KP771895 Vesicle fluid Not known Zoster
DE10-4367 KP771896 Vesicle fluid Not known Zoster
DE10-4582 KP771897 Vesicle fluid Not known Zoster
DE10-5454 KP771898 Vesicle fluid Not known Zoster
DE10-567 KP771899 Vesicle fluid Not known Zoster
DE10-581 KP771900 Vesicle fluid Not known Zoster
KV6-2313 KP771901 CSF Not known Encephalitis
KV6-3127 KP771902 CSF Not known Encephalitis
KV8-1390 KP771903 CSF Not known Encephalitis
Zos/Cli/Ves/NIG/9 KP771924 Vesicle fluid Not known Zoster
Cli/UK/CSF/2909/2011 KP771889 CSF 29/09/11 Encephalitis
Cli/UK/CSF/3009/2011 KP771890 CSF 30/09/11 Encephalitis
Zos/Cli/CSF/SING/1008/2008 KP771922 CSF 10/08/08 Zoster and cerebellitis
Var/Cli/Ves/SING/1308/2008 KP771919 Vesicle fluid 13/08/08 Varicella
Var/Cli/Ves/GER/31/2005 KP771915 Vesicle fluid Not known Varicella
Var/Cli/Ves/GER/43/2006 KP771916 Vesicle fluid Not known Varicella
Var/Cli/Ves/ITA/51/2006 KP771918 Vesicle fluid Not known Varicella
Var/Cli/Ves/GER/63/2006 KP771917 Vesicle fluid Not known Varicella
Var/Cli/Ves/FRA/98/2013 KP771914 Vesicle Not known Varicella
a BAL, bronchoalveolar lavage.
b Dates are in the format day/month/year.
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aligned and analyzed. All regions containing gaps or ambiguous
sites were excluded prior to any analysis.

A phylogenetic network based on all strains was initially con-
structed. The network demonstrated a divergence into the previously
described five clades designated 1 to 5 (15–17) but also showed six
strains that did not cluster to any of these clades (Fig. 2.). One of the
strains sequenced here, Var/Cli/Ves/France/98/2013, and strain
Var160 available from GenBank clustered together and therefore ful-
filled the requirements for clade designation agreed on during the
VZV nomenclature meeting in 2008 (17). We designated this clade 6.
Furthermore, strains Cli/UK/CSF/2909/2011 and Cli/UK/CSF/3009/
2011 clustered separately as two novel clade candidates. Strains 1483/
2005 and 457 also clustered separately as clade candidates as sug-
gested previously (29).

Interclade recombination. Interclade recombinants are de-
fined as recombinant strains containing two or more genomic
segments that phylogenetically cluster closely to two or more
clades, respectively, i.e., a recombinant strain that has descended
from parental strains from different phylogenetic clades. If there
are recombination crossovers that are present in all strains in a
specific clade, we assume that these crossovers are descended from
an ancient recombination event that affected a common ancestor
to all strains in that clade. These recombination events are there-
fore classified as ancient (since the recombination event occurred
prior to the divergence of that clade).

In the phylogenetic network based on all strains, there are four
outliers (highlighted in red in Fig. 2) that we consider to be either
interclade recombinant candidates or single representatives of
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novel VZV clades. To further resolve the evolutionary history of
VZV and to reveal ancient interclade recombination events, we
created a consensus strain for each clade. Owing to the geograph-
ical separation of strains, there might be a sampling bias favoring
strains from certain clades. Here, all clades or clade candidates are
treated equally to resolve the extent of interclade recombination of
VZV. A new phylogenetic network was created based on the con-
sensus sequences from all strains within each of the six clades and
the four outliers. In total, 10 sequences were included in the anal-
ysis. We also performed a bootscan analysis to detect and illustrate
recombination crossovers. The phi-test for statistical analysis of
recombination was applied on the data set, and the informative
site analysis was applied on the recent interclade recombinant
candidate strain Cli/UK/CSF/2909/2011.

The topology of the network (Fig. 3A) resembles that of the
network including all strains and suggests conflicting phyloge-
netic signals. The topology is star shaped, which is typical when

there has been an evolutionary history with an exponential popu-
lation growth and/or massive recombination. Furthermore, the
parallel internal branches illustrate phylogenetic incongruences,
which is typical when there are several recombination events
and/or convergent evolution. The phi-test demonstrated high sta-
tistical significance for recombination in favor over convergent
evolution (P � 0.00), and the bootscan analysis demonstrated
highly shifting phylogenetic support indicating numerous recom-
bination crossovers (Fig. 3A). The RDP4 program detected three
distinct recombination events in six recombinant clades (clades 3,
4, 5, and 6 and strains Cli/UK/CSF/2909/2011 and 1483/2005)
(Fig. 3B). Although the bootscan analysis of interclade recombi-
nant candidate strain Cli/UK/CSF/2909/2011 did not demon-
strate convincing evidence for recombination, the informative site
analysis of the same strain demonstrated segmented differences in
phylogenetic support (Fig. 3C).

Intraclade recombination. An intraclade recombinant is de-

FIG 3 Phylogenetic and interclade recombination analysis. (A) Phylogenetic network based on the consensus sequence of all clades and the four outliers. A
bootscan analysis was based on all genomes with respective sequence as query to illustrate shifts in phylogenetic topologies. (B) Recombinant clades suggested by
the RDP program and statistical support yielded by each method for respective recombination event. (C) Simplot analysis of arbitrarily selected putative
recombinant strains to illustrate phylogenetic incongruences. Arrows highlight recombination crossovers supported by two or more mutations on each side of
the crossover.

Norberg et al.

7138 jvi.asm.org July 2015 Volume 89 Number 14Journal of Virology

http://jvi.asm.org


fined as a recombinant strain in a specific clade that has descended
from parental strains from that same clade. All intraclade recom-
binants are, by definition, regarded as recent recombinant strains
(since the recombination event occurred after the divergence of
that clade).

To estimate the frequency of intraclade recombination events
of VZV, we independently analyzed strains from each clade har-
boring four or more strains, e.g., clades 1, 2, 3, and 5 (most meth-
ods require at least four strains in order to analyze recombination
events). First, five phylogenetic networks were constructed based
on the strains from each clade, respectively, to detect and illustrate
the presence of conflicting phylogenetic signals. Then, a phi-test
for statistical analysis of recombination was applied to each data
set to determine whether there was statistical support for recom-
bination within each clade. In a further attempt to detect and
classify intraclade recombination events with statistical signifi-
cance, we applied the methods RDP, Geneconv, Chimaera, Max-
Chi, BootScan, SisScan, 3Seq, and LARD implemented in the
RDP4 program on each sequence. Finally, we analyzed the distri-
bution of conflicting sites among selected strains using the infor-
mative site analysis tool implemented in the SimPlot program.
The informative sites analysis also made it possible to estimate the
frequency of recombinant candidates, (i.e., strains with conflict-
ing phylogenetic signals but too few SNPs that differ between the
putative parental strains in order to obtain a statistically signifi-
cant measure of recombination).

Recombination analysis of strains within clade 1. The net-
work based on clade 1 strains demonstrated a few internal parallel
edges suggesting phylogenetic incongruences (Fig. 4A). The exis-
tence of recombinant strains was statistically supported (P �
0.041) by the phi-test, and putative recombination crossovers
were detected by using the informative sites analysis tool (Fig. 4B
and C). In contrast, the RDP4 program was unable to detect any
recombination events among the clade 1 strains with statistical
significance.

Recombination analysis of strains within clade 2. The se-
quences of strains pOka and vOka from GenBank contain several
ambiguous sites (denoted “N,” “Y,” etc.). As a precaution, all these
sites were excluded prior to the analysis, resulting in a data set
(denoted data set 1) with less information. In order to analyze
additional information in the other strains, we also analyzed the
original data set excluding strains pOka and vOka (denoted data
set 2), i.e., two data sets were therefore analyzed in parallel for
strains within clade 2.

The phylogenetic networks based on both data sets contained
parallel branches demonstrating conflicting phylogenetic signals
(Fig. 5A and C). The phi-test also provided high statistical signif-
icance (P � 0.018) for recombination among strains in data set 1
but not for data set 2 (P � 0.069). The RDP4 program detected
several recombinant strains and recombination crossovers in both
data sets (Fig. 5B and D), and recombination was statistically sup-
ported by the methods RDP, BootScan, MaxChi, Chimaera, and

FIG 4 Intraclade recombination analysis of clade 1. (A) Phylogenetic network based on the complete genomes of strains from clade 1. (B) Simplot analysis of
arbitrarily selected putative recombinant strains from clade 1 to illustrate phylogenetic incongruences. The arrow highlights a recombination crossover sup-
ported by two or more mutations on each side of the crossover.
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3Seq. In addition, at least five recombinants and eight recombina-
tion crossovers were also detected and clearly visualized by the
informative sites analysis tool (Fig. 6A to E).

Recombination analysis of strains within clade 3. Phyloge-
netic incongruences were clearly illustrated in the clade 3 network,
but the phi-test showed that these were not statistically significant
(P � 0.23) for recombination when all strains were analyzed (Fig.
7A). However, when putative nonrecombinants were manually
identified and excluded from the analysis, the phi-test did show
statistically significant (P � 0.001) signals for recombination. At
least two recombinants and two recombination crossovers were
independently detected by using the informative sites analysis tool
(Fig. 7B and C) and the RDP4 program (Fig. 7D), respectively.

Recombination analysis of strains within clade 5. The analy-

sis of clade 5 strains was similar to that of clade 3 strains. The
network demonstrated internal parallel branches illustrating phy-
logenetic incongruences (Fig. 8A). The phi-test again resulted in
statistically significant recombination when putative nonrecom-
binants were manually identified and excluded from the analysis
(P � 0.006) but not when all strains were analyzed (P � 0.39). The
informative sites analysis tool identified at least two different re-
combination events (Fig. 8B and C), and the methods MaxChi and
Chimaera implemented in the RDP4 program identified one re-
combination event with statistical significance (Fig. 8D).

DISCUSSION

Here, we have demonstrated that homologous recombination oc-
curs frequently between wild-type VZV strains. We have identi-
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fied putative novel interclade recombinants and well-supported
frequent intraclade recombination within clades 1, 2, 3, and 5.

The VZV genome is significantly more conserved than those of
HSV-1 and HSV-2. Excluding the variable repeat regions, there
are approximately 30 to 200 SNP differences between any two
VZV strains (60). DNA data from recombinant and parental
strains may thus contain too few SNPs differing between the pa-
rental strains, resulting in no or only few parental-specific nucle-
otides transferred to the recombinant strains. It will hence be dif-
ficult to detect recombination events between similar parental
strains or to classify them with high statistical significance. It is
therefore likely that many of the strains analyzed here that contain
conflicting phylogenetic signals but have putative parental strains
that are too closely related to yield statistical significance for re-
combination are indeed true recombinants. Thus, the frequency
of recombination is potentially even higher for VZV than reported
here.

Little is known about when, how, and where recombination
occurs, other than that recombination requires the simultaneous
replication of two or more distinct viruses in the same cell. Re-
combination thus requires multiple infections with two or more
distinct strains. It is, however, uncertain if such multiple infec-
tions occur through primary infections with heterogeneous virus
populations, through simultaneous multiple primary infections
from different sources, or by reinfections later in life, scenarios
that all are probable. Furthermore, while a recombinant virus may
be produced within a person, it is uncertain if the recombination
event happens directly after infection or during latency or reacti-
vation or what kind of mechanism may trigger recombination.
Interestingly, two of the few putative interclade recombinants de-
tected here (Cli/UK/CSF/3009/2011 and Cli/UK/CSF/2909/2011)
were collected from cerebrospinal fluid (CSF) from patients with
encephalitis. It may therefore be speculated that central nervous
system (CNS) infections facilitate the replication of different vi-
ruses in the same cell or vice versa. Although this cannot explain all
the recombination events of VZV, further studies on VZV strains
collected from CSF may be warranted to better understand the
underlying mechanisms of VZV recombination and of VZV CNS
infections.

Clade 2, which harbors the vaccine strains, showed evidence of
multiple intraclade recombination events. Although ambiguities
remain about which strains are parental and which are recombi-
nants, our data suggest that either the original vaccine strains
and/or the vaccine strains isolated from lesions are intraclade re-
combinants. It is therefore likely that the vaccine strains have al-
ready been involved in recombination events, either in vivo or in
vitro. The vaccine preparation has previously been shown to be
heterogeneous (49, 61) and thus may have recombined during
passaging in vitro or within the host following inoculation. In any
case, it is only the detection of interclade vaccine/wild-type re-
combinants that can reliably reveal in vivo recombination between
vaccine and wild-type strains after vaccination, since no strains
from other clades are present in the vaccine batches (49).

However, vaccination with Zostavax will undoubtedly result in
individuals infected with multiple strains, since most adults are
already carrying latent VZV strains. Since Zostavax is based on
clade 2 strains, most vaccinated persons living outside Asia (where
clade 2 is predominant) will most likely also be carrying multiple
strains from different clades. Despite thorough analysis, we did
not, however, detect any interclade vaccine/wild-type recombi-

FIG 6 (A to D) Simplot analysis of arbitrarily selected putative recombinant
strains from clade 2 to illustrate phylogenetic incongruences. Arrows highlight
recombination crossovers supported by two or more mutations on each side of
the crossover. Sites that were ambiguous in the GenBank sequences for vOka
and pOka were excluded prior to the analysis.
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nants. These results may suggest that the probability of interclade
VZV vaccine/wild-type recombinants emerging is low, but this
may not necessarily be the case. First, we have analyzed only a
limited number of strains (n � 115). Second, as mentioned above,
it is unknown when and where the actual recombination event
occurs. It may thus take some time after vaccination before a re-
combinant emerges and before we can detect it. The best chances
of detection of vaccine/wild-type recombinants may therefore be
to analyze reactivating zoster in elderly patients vaccinated with
Zostavax, which makes an interesting avenue for further studies.

One intriguing question is when the recombination events de-

tected here occurred. Unfortunately, exact dating of recombina-
tion events is troublesome and requires knowledge about the pa-
rental strains involved in the process. Assuming we actually had
that knowledge, the different segments in the recombinant strains
retrieved from respective parental strain could be identified and
compared with the corresponding regions in the recombinant
strains. This would then allow us to estimate the number of sub-
stitutions that have taken place since the recombination event.
Estimations of the molecular clock rate (substitutions/site/year)
could then be used in combination with the number of SNPs to
calculate the number of years since the recombination event.

FIG 7 Intraclade recombination analysis of clade 3. (A) Phylogenetic network based on the complete genomes of strains from clade 3. (B and C) Simplot analysis
of arbitrarily selected putative recombinant strains from clade 3 to illustrate phylogenetic incongruences. Arrows highlight recombination crossovers supported
by two or more mutations on each side of the crossover. (D) Recombinant strains from clade 3 suggested by the RDP program and statistical support yielded by
each method for the respective recombination event.
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However, in this case we have no knowledge of the parental strains
of the recombinants. At best, we might have DNA data from
strains closely related to the parental strains, i.e., that are similar to
the parental strains but differ from them by several SNPs. If we
assumed that these are the true parental strains, these SNPs would
mistakenly be interpreted to have originated after the recombina-
tion event. This would result in the predicted date of recombina-
tion being older than the real date. Due to these circumstances and
given the uncertainties of the molecular clock rate, we have there-
fore not made any attempts to date single recombination events in
this study, other than classifying them as recent or ancient based
on the relation to clade divergence.

Several attempts have been made to distinguish recombinant
clades from parental clades, i.e., which clades descend from re-
combinants and which are not recombinants (14–16). However,
these kinds of analyses require assumptions on the total global
genetic divergence and the exclusion of the possibility of other
existing clades. Since we have only 115 genomes and the number
of defined clades has increased as more strains are sequenced, such

assumptions are likely to be erroneous. Furthermore, the recom-
bination and parental history become increasingly complicated as
more clades are included, and we cannot exclude that all clades
have been involved in recombination events at some occasion. We
therefore avoided distinguishing between parental and recombi-
nant clades in the present study, but we conclude that multiple
ancient interclade recombination events have occurred in the evo-
lutionary history of VZV. We also suggest that the complexity of
the recombination crossover patterns will increase as more strains
are sequenced and more clades are discovered. Future studies that
produce whole-genome sequences for strains from various geo-
graphic regions may shed further light on these issues.

It was suggested during the VZV nomenclature meeting in
2008 (17) that the five major VZV clades should be designated 1 to
5 and that novel strains should be designated members of an ex-
isting clade, based on phylogenetic clustering. The intention was
also to introduce criteria so that each existing clade and future
novel clades should have at least two whole genomes sequenced to
be considered true clades. Although additional clades have been

FIG 8 Intraclade recombination analysis of clade 5. (A) Phylogenetic network based on the complete genomes of strains from clade 5. (B and C) Simplot analysis
of arbitrarily selected putative recombinant strains from clade 5 to illustrate phylogenetic incongruences. Arrows highlight recombination crossovers supported
by two or more mutations on each side of the crossover. (D) Recombinant strains from clade 5 suggested by the RDP program and statistical support yielded by
each method for respective recombination event.
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suggested (29, 62, 63), only clades 1 to 5 have hitherto fulfilled this
requirement. One strain sequenced here (Var/Cli/Ves/France/98/
2013), however, clusters phylogenetically with another strain
(Var160; GenBank accession number KC112914.1), separately
from strains from clades 1 to 5. The requirements for a sixth clade
are therefore now fulfilled, and we designate this clade 6. Interest-
ingly, these two strains that form clade 6 were collected in widely
separated geographic regions. Strain Var160 was isolated from
vesicle fluid from a 7-year-old boy in Mexico in 2007. Strain Var/
Cli/Ves/France/98/2013, on the other hand, was isolated from ves-
icle fluid from a 2-year-old girl with chicken pox in France in 2013.
This finding indicates that clade 6 may have a geographic distri-
bution similar to that of clades 1 and 3, which are predominant in
Europe and North America, although additional isolates are re-
quired to define its predominant geographic locations.

The high frequency of recombination detected here further
supports previous suggestions that interclade recombination of
VZV could dramatically increase in the future (22). Increased mi-
gration and the introduction of live vaccine strains from clade 2 in
geographical regions, where strains from other clades are predom-
inant, will undoubtedly erase previous geographical barriers be-
tween clades. The rates of interclade recombination should also
increase as the geographic barriers diminish, and it is possible that
most VZV strains will eventually have mosaic recombinant ge-
nomes similar to those in HSV-1 (22, 23). If so, a challenging
question will be how to define a VZV clade in the future. It will be
highly impractical to continue with the clade designation on a
complete-genome level, since every unique interclade recombi-
nant will cluster separately in a phylogenetic tree or network, as
described for HSV-1 (22). Although it may take several decades
before the majority of VZV strains are mosaic recombinants, the
results from this study suggest that several wild-type recombinant
strains have already emerged. Collaborative discussions about fu-
ture VZV nomenclature, classification, and genotyping are thus
important in the near future.
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